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In this chapter we deal with a one trait, repeated records model that has been ex-
tensively used in animal breeding, and particularly in lactation studies with dairy cattle.
The assumptions of this model are not entirely realistic, but may be an adequate approx-
imation. The scalar model is

yij = x
′

ijβ + z
′

iju + ci + eij. (1)

β represents fixed effects, and x
′
ij relates the jth record of the ith animal to elements of

β .

u represents other random effects, and z
′
ij relates the record to them.

ci is a “cow” effect. It represents both genetic merit for production and permanent
environmental effects.

eij is a random “error” associated with the individual record.

The vector representation is

y = Xβ + Zu + Zcc + e. (2)

V ar(u) = G,

V ar(c) = I σ2
c if cows are unrelated, with σ2

c = σ2
a + σ2

p

= A σ2
a + I σ2

p if cows are related,

where σ2
p is the variance of permanent environmental effects, and if there are non-additive

genetic effects, it also includes their variances. In that case I σ2
p is only approximate.

V ar(e) = I σ2
e .

Cov(u, a′), Cov(u, e′), and Cov(a, e′) are all null. For the related cow model let

Zcc = Zca + Zcp. (3)
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It is advantageous to use this latter model in setting up the mixed model equations, for
then the simple method for computing A−1 can be used. There appears to be no simple
method for computing directly the inverse of V ar(c).

X′X X′Z X′Zc X′Zc

Z′X Z′Z + σ2
eG
−1 Z′Zc Z′Zc

Z
′
cX Z

′
cZ Z

′
cZc + A−1 σ

2
e

σ2
a

Z
′
cZc

Z
′
cX Z

′
cZ Z

′
cZc Z

′
cZc + Iσ

2
e

σ2
p




βo

û
â
p̂

 =


X′y
Z′y
Z

′
cy

Z
′
cy

 (4)

These equations are easy to write provided G−1 is easy to compute, G being diagonal, e.g.
as is usually the case. A−1 can be computed by the easy method. Further Z

′
cZc + Iσ2

e/σ
2
p

is diagonal, so p̂ can be “absorbed” easily. In fact, one would not need to write the p̂
equations. See Henderson (1975b). Also Z′Z+σ2

eG
−1 is sometimes diagonal and therefore

û can be absorbed easily. If predictions of breeding values are of primary interest, â is
what is wanted. If, in addition, predictions of real producing abilities are wanted, one
needs p̂. Note that by subtracting the 4th equation of (24.4) from the 3rd we obtain

A−1
(
σ2
e/σ

2
a

)
â− I

(
σ2
e/σ

2
p

)
p̂ = 0.

Consequently

p̂ =
(
σ2
p/σ

2
a

)
A−1â, (5)

and predictions of real producing abilities are(
I +

(
σ2
p/σ

2
a

)
A−1

)
â. (6)

Note that under the model used in this chapter

V ar(yij) = V ar(yik), j 6= k.

Cov(yij, yik) is identical for all pairs of j 6= k. This is not necessarily a realistic model. If
we wish a more general model, probably the most logical and easiest one to analyze is that
which treats different lactations as separate traits, the methods for which are described
in Chapter 26.

We illustrate the simple repeatability model with the following example. Four animals
produced records as follows in treatments 1,2,3. The model is

yij = ti + aj + pj + eij.

Animals
Treatment 1 2 3 4

1 5 3 - 4
2 6 5 7 -
3 8 - 9 -
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The relationship matrix of the 4 animals is
1 .5 .5 .5

1 .25 .125
1 .5

1

 .

V ar(a) = .25 Aσ2
y,

V ar(p) = .2 Iσ2
y ,

Iσ2
e = .55 Iσ2

y .

These values correspond to h2 = .25 and r = .45, where r denotes repeatability. The OLS
equations are 

3 0 0 1 1 0 1 1 1 0 1
3 0 1 1 1 0 1 1 1 0

2 1 0 1 0 1 0 1 0
3 0 0 0 3 0 0 0

2 0 0 0 2 0 0
2 0 0 0 2 0

1 0 0 0 1
3 0 0 0

2 0 0
2 0

1



 t
a
p

 =



12
18
17
19
8

16
4

19
8

16
4



. (7)

Note that the last 4 equations are identical to equations 4-7. Thus a and p are confounded
in a fixed model. Now we add 2.2 A−1 to the 4-7 diagonal block of coefficients and 2.75
I to the 8-11 diagonal block of coefficients. The resulting coefficient matrix is in (24.8).
2.2 = .55/.25, and 2.75 = .55/.2.

3.0 0 0 1.0 1.0 0 1.0 1.0 1.0 0 1.0
3.0 0 1.0 1.0 1.0 0 1.0 1.0 1.0 0

2.0 1.0 0 1.0 0 1.0 0 1.0 0
7.2581 −1.7032 −.9935 −1.4194 3.0 0 0 0

5.0280 −.1892 .5677 0 2.0 0 0
5.3118 −1.1355 0 0 2.0 0

4.4065 0 0 0 1.0
5.75 0 0 0

4.75 0 0
4.75 0

3.75



(8)
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The inverse of (24.8) (times 1000) is

693 325 313 −280 −231 −217 −247 −85 −117 −43 −119
709 384 −288 −246 −266 −195 −96 −114 −118 −34

943 −306 −205 −303 −215 −126 −60 −152 −26
414 227 236 225 −64 24 26 15

390 153 107 0 −64 31 33
410 211 14 37 −53 2

406 −3 48 −2 −42
261 38 41 24

286 21 18
290 12

310



(9)

The solution is

t̂′ = (4.123 5.952 8.133),

â′ = (.065, −.263, .280, .113),

p̂′ = (.104, −.326, .285, −.063).

We next estimate σ2
e , σ

2
a, σ

2
p, by MIVQUE with the priors that were used in the above

mixed model solution. The Z
′
cW submatrix for both a and p is

1 1 1 3 0 0 0 3 0 0 0
1 1 0 0 2 0 0 0 2 0 0
0 1 1 0 0 2 0 0 0 2 0
1 0 0 0 0 0 1 0 0 0 1

 . (10)

The variance of the right hand sides of the mixed model equations contains
W′ZcAZ

′
cW σ2

a, where W = (X Z Zc Zc). The matrix of coefficients of σ2
a is in (24.11).

V ar(r) also contains W′ZcZ
′
cW σ2

p and this matrix is in (24.12). The coefficients of σ2
e

are in (24.7).

5.25 4.88 3.25 6.0 3.25 2.5 1.65 6.0 3.25 2.5 1.63
5.5 3.75 6.0 3.5 3.5 1.13 6.0 3.5 3.5 1.13

3.0 4.5 1.5 3.0 1.0 4.5 1.5 3.0 1.0
9.0 3.0 3.0 1.5 9.0 3.0 3.0 1.5

4.0 1.0 .25 3.0 4.0 1.0 .25
4.0 1.0 3.0 1.0 4.0 1.0

1.0 1.5 .25 1.0 1.0
9.0 3.0 3.0 1.5

4.0 1.0 .25
4.0 1.0

1.0



(11)
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

3 2 1 3 2 0 1 3 2 0 1
3 2 3 2 2 0 3 2 2 0

2 3 0 2 0 3 0 2 0
9 0 0 0 9 0 0 0

4 0 0 0 4 0 0
4 0 0 0 4 0

1 0 0 0 1
9 0 0 0

4 0 0
4 0

1



(12)

Now V ar(â) contains Ca(V ar(r))C′aσ
2
a, where Ca is the matrix formed by rows 4-9 of the

matrix in (24.9). Then Ca(V ar(r))C
′
a is

.0168 .0012 −.0061 .0012
.0423 −.0266 −.0323

.0236 .0160
.0274

 σ2
a (13)

+


.0421 −.0019 −.0099 .0050

.0460 −.0298 −.0342
.0331 .0136

.0310

 σ2
p (14)

+


.0172 .0001 −.0022 −.0004

.0289 −.0161 −.0234
.0219 .0042

.0252

 σ2
e . (15)

We need â′A−1â′ = .2067. The expectation of this is

trA−1 [matrix (24.13) + matrix (24.14) + matrix (24.15)]

= .1336 σ2
e + .1423 σ2

a + .2216 σ2
p.

To find V ar(p̂) we use Cp, the last 6 rows of (24.9).

V ar(p̂) =


.0429 −.0135 −.0223 −.0071

.0455 −.0154 −.0166
.0337 .0040

.0197

 σ2
a (16)

+


.1078 −.0423 −.0466 −.0189

.0625 −.0106 −.0096
.0586 −.0014

.0298

 σ2
p (17)
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+


.0441 −.0167 −.0139 −.0135

.0342 −.0101 −.0074
.0374 −.0133

.0341

 σ2
e . (18)

We need p̂′p̂ = .2024 with expectation

tr[matrix (24.16) + matrix (24.17) + matrix (24.18)]

= .1498 σ2
e + .1419 σ2

a + .2588 σ2
p.

We need ê′ê.
ê = [I−WCW′]y,

where C = matrix (24.9), and I−WCW′ is

.4911 −.2690 −.2221 −.1217 .1183 .0034 −.0626 .0626
.4548 −.1858 .1113 −.1649 .0536 .0289 −.0289

.4079 .0104 .0466 −.0570 .0337 −.0337
.5122 −.2548 −.2574 −.1152 .1152

.4620 −.2073 −.0238 .0238
.4647 .1390 −.1390

.3729 −.3729
.3729


(19)

Then

ê = [.7078, −.5341, −.1736, −.1205, −.3624, .4829, −.3017, .3017].

ê′ê = 1.3774.

V ar(ê) = (I−WCW′) V ar(y) (I−WCW′),

V ar(y) = ZcAZ
′

c σ
2
a + ZcZ

′

c σ
2
p + I σ2

e .

=



1 .5 .5 1. .5 .5 1. .5
1. .125 .5 1. .25 .5 .25

1. .5 .125 .5 .5 .5
1. .5 .5 1. .5

1. .25 .5 .25
1. .5 1.

1. .5
1.


σ2
a

+



1 0 0 1 0 0 1 0
1 0 0 1 0 0 0

1 0 0 0 0 0
1 0 0 1 0

1 0 0 0
1 0 1

1 0
1


σ2
p + Iσ2

e .
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Then the diagonals of V ar(ê) are

(.0651, .1047, .1491, .0493, .0918, .0916, .0475, .0475) σ2
a

+ (.1705, .1358, .2257, .1167, .1498, .1462, .0940, .0940) σ2
p

+ [diagonals of (24.19)] σ2
e .

Then E(ê′ê) is the sum of these diagonals

= .6465 σ2
a + 1.1327 σ2

p + 3.5385 σ2
e .
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